123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- from __future__ import print_function
- import os
- import time
- import random
- from PIL import Image
- import tensorflow as tf
- import numpy as np
- from utils import *
- def concat(layers):
- return tf.concat(layers, axis=3)
- def DecomNet(input_im, layer_num, channel=64, kernel_size=3):
- input_max = tf.reduce_max(input_im, axis=3, keepdims=True)
- input_im = concat([input_max, input_im])
- with tf.variable_scope('DecomNet', reuse=tf.AUTO_REUSE):
- conv = tf.layers.conv2d(input_im, channel, kernel_size * 3, padding='same', activation=None, name="shallow_feature_extraction")
- for idx in range(layer_num):
- conv = tf.layers.conv2d(conv, channel, kernel_size, padding='same', activation=tf.nn.relu, name='activated_layer_%d' % idx)
- conv = tf.layers.conv2d(conv, 4, kernel_size, padding='same', activation=None, name='recon_layer')
- R = tf.sigmoid(conv[:,:,:,0:3])
- L = tf.sigmoid(conv[:,:,:,3:4])
- return R, L
- def RelightNet(input_L, input_R, channel=64, kernel_size=3):
- input_im = concat([input_R, input_L])
- with tf.variable_scope('RelightNet'):
- conv0 = tf.layers.conv2d(input_im, channel, kernel_size, padding='same', activation=None)
- conv1 = tf.layers.conv2d(conv0, channel, kernel_size, strides=2, padding='same', activation=tf.nn.relu)
- conv2 = tf.layers.conv2d(conv1, channel, kernel_size, strides=2, padding='same', activation=tf.nn.relu)
- conv3 = tf.layers.conv2d(conv2, channel, kernel_size, strides=2, padding='same', activation=tf.nn.relu)
-
- up1 = tf.image.resize_nearest_neighbor(conv3, (tf.shape(conv2)[1], tf.shape(conv2)[2]))
- deconv1 = tf.layers.conv2d(up1, channel, kernel_size, padding='same', activation=tf.nn.relu) + conv2
- up2 = tf.image.resize_nearest_neighbor(deconv1, (tf.shape(conv1)[1], tf.shape(conv1)[2]))
- deconv2= tf.layers.conv2d(up2, channel, kernel_size, padding='same', activation=tf.nn.relu) + conv1
- up3 = tf.image.resize_nearest_neighbor(deconv2, (tf.shape(conv0)[1], tf.shape(conv0)[2]))
- deconv3 = tf.layers.conv2d(up3, channel, kernel_size, padding='same', activation=tf.nn.relu) + conv0
-
- deconv1_resize = tf.image.resize_nearest_neighbor(deconv1, (tf.shape(deconv3)[1], tf.shape(deconv3)[2]))
- deconv2_resize = tf.image.resize_nearest_neighbor(deconv2, (tf.shape(deconv3)[1], tf.shape(deconv3)[2]))
- feature_gather = concat([deconv1_resize, deconv2_resize, deconv3])
- feature_fusion = tf.layers.conv2d(feature_gather, channel, 1, padding='same', activation=None)
- output = tf.layers.conv2d(feature_fusion, 1, 3, padding='same', activation=None)
- return output
- class lowlight_enhance(object):
- def __init__(self, sess):
- self.sess = sess
- self.DecomNet_layer_num = 5
- # build the model
- self.input_low = tf.placeholder(tf.float32, [None, None, None, 3], name='input_low')
- self.input_high = tf.placeholder(tf.float32, [None, None, None, 3], name='input_high')
- [R_low, I_low] = DecomNet(self.input_low, layer_num=self.DecomNet_layer_num)
- [R_high, I_high] = DecomNet(self.input_high, layer_num=self.DecomNet_layer_num)
-
- I_delta = RelightNet(I_low, R_low)
- I_low_3 = concat([I_low, I_low, I_low])
- I_high_3 = concat([I_high, I_high, I_high])
- I_delta_3 = concat([I_delta, I_delta, I_delta])
- self.output_R_low = R_low
- self.output_I_low = I_low_3
- self.output_I_delta = I_delta_3
- self.output_S = R_low * I_delta_3
- # loss
- self.recon_loss_low = tf.reduce_mean(tf.abs(R_low * I_low_3 - self.input_low))
- self.recon_loss_high = tf.reduce_mean(tf.abs(R_high * I_high_3 - self.input_high))
- self.recon_loss_mutal_low = tf.reduce_mean(tf.abs(R_high * I_low_3 - self.input_low))
- self.recon_loss_mutal_high = tf.reduce_mean(tf.abs(R_low * I_high_3 - self.input_high))
- self.equal_R_loss = tf.reduce_mean(tf.abs(R_low - R_high))
- self.relight_loss = tf.reduce_mean(tf.abs(R_low * I_delta_3 - self.input_high))
- self.Ismooth_loss_low = self.smooth(I_low, R_low)
- self.Ismooth_loss_high = self.smooth(I_high, R_high)
- self.Ismooth_loss_delta = self.smooth(I_delta, R_low)
- self.loss_Decom = self.recon_loss_low + self.recon_loss_high + 0.001 * self.recon_loss_mutal_low + 0.001 * self.recon_loss_mutal_high + 0.1 * self.Ismooth_loss_low + 0.1 * self.Ismooth_loss_high + 0.01 * self.equal_R_loss
- self.loss_Relight = self.relight_loss + 3 * self.Ismooth_loss_delta
- self.lr = tf.placeholder(tf.float32, name='learning_rate')
- optimizer = tf.train.AdamOptimizer(self.lr, name='AdamOptimizer')
- self.var_Decom = [var for var in tf.trainable_variables() if 'DecomNet' in var.name]
- self.var_Relight = [var for var in tf.trainable_variables() if 'RelightNet' in var.name]
- self.train_op_Decom = optimizer.minimize(self.loss_Decom, var_list = self.var_Decom)
- self.train_op_Relight = optimizer.minimize(self.loss_Relight, var_list = self.var_Relight)
- self.sess.run(tf.global_variables_initializer())
- self.saver_Decom = tf.train.Saver(var_list = self.var_Decom)
- self.saver_Relight = tf.train.Saver(var_list = self.var_Relight)
- print("[*] Initialize model successfully...")
- def gradient(self, input_tensor, direction):
- self.smooth_kernel_x = tf.reshape(tf.constant([[0, 0], [-1, 1]], tf.float32), [2, 2, 1, 1])
- self.smooth_kernel_y = tf.transpose(self.smooth_kernel_x, [1, 0, 2, 3])
- if direction == "x":
- kernel = self.smooth_kernel_x
- elif direction == "y":
- kernel = self.smooth_kernel_y
- return tf.abs(tf.nn.conv2d(input_tensor, kernel, strides=[1, 1, 1, 1], padding='SAME'))
- def ave_gradient(self, input_tensor, direction):
- return tf.layers.average_pooling2d(self.gradient(input_tensor, direction), pool_size=3, strides=1, padding='SAME')
- def smooth(self, input_I, input_R):
- input_R = tf.image.rgb_to_grayscale(input_R)
- return tf.reduce_mean(self.gradient(input_I, "x") * tf.exp(-10 * self.ave_gradient(input_R, "x")) + self.gradient(input_I, "y") * tf.exp(-10 * self.ave_gradient(input_R, "y")))
- def evaluate(self, epoch_num, eval_low_data, sample_dir, train_phase):
- print("[*] Evaluating for phase %s / epoch %d..." % (train_phase, epoch_num))
- for idx in range(len(eval_low_data)):
- input_low_eval = np.expand_dims(eval_low_data[idx], axis=0)
- if train_phase == "Decom":
- result_1, result_2 = self.sess.run([self.output_R_low, self.output_I_low], feed_dict={self.input_low: input_low_eval})
- if train_phase == "Relight":
- result_1, result_2 = self.sess.run([self.output_S, self.output_I_delta], feed_dict={self.input_low: input_low_eval})
- save_images(os.path.join(sample_dir, 'eval_%s_%d_%d.png' % (train_phase, idx + 1, epoch_num)), result_1, result_2)
- def train(self, train_low_data, train_high_data, eval_low_data, batch_size, patch_size, epoch, lr, sample_dir, ckpt_dir, eval_every_epoch, train_phase):
- assert len(train_low_data) == len(train_high_data)
- numBatch = len(train_low_data) // int(batch_size)
- # load pretrained model
- if train_phase == "Decom":
- train_op = self.train_op_Decom
- train_loss = self.loss_Decom
- saver = self.saver_Decom
- elif train_phase == "Relight":
- train_op = self.train_op_Relight
- train_loss = self.loss_Relight
- saver = self.saver_Relight
- load_model_status, global_step = self.load(saver, ckpt_dir)
- if load_model_status:
- iter_num = global_step
- start_epoch = global_step // numBatch
- start_step = global_step % numBatch
- print("[*] Model restore success!")
- else:
- iter_num = 0
- start_epoch = 0
- start_step = 0
- print("[*] Not find pretrained model!")
- print("[*] Start training for phase %s, with start epoch %d start iter %d : " % (train_phase, start_epoch, iter_num))
- start_time = time.time()
- image_id = 0
- for epoch in range(start_epoch, epoch):
- for batch_id in range(start_step, numBatch):
- # generate data for a batch
- batch_input_low = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32")
- batch_input_high = np.zeros((batch_size, patch_size, patch_size, 3), dtype="float32")
- for patch_id in range(batch_size):
- h, w, _ = train_low_data[image_id].shape
- x = random.randint(0, h - patch_size)
- y = random.randint(0, w - patch_size)
-
- rand_mode = random.randint(0, 7)
- batch_input_low[patch_id, :, :, :] = data_augmentation(train_low_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode)
- batch_input_high[patch_id, :, :, :] = data_augmentation(train_high_data[image_id][x : x+patch_size, y : y+patch_size, :], rand_mode)
-
- image_id = (image_id + 1) % len(train_low_data)
- if image_id == 0:
- tmp = list(zip(train_low_data, train_high_data))
- random.shuffle(list(tmp))
- train_low_data, train_high_data = zip(*tmp)
- # train
- _, loss = self.sess.run([train_op, train_loss], feed_dict={self.input_low: batch_input_low, \
- self.input_high: batch_input_high, \
- self.lr: lr[epoch]})
- print("%s Epoch: [%2d] [%4d/%4d] time: %4.4f, loss: %.6f" \
- % (train_phase, epoch + 1, batch_id + 1, numBatch, time.time() - start_time, loss))
- iter_num += 1
- # evalutate the model and save a checkpoint file for it
- if (epoch + 1) % eval_every_epoch == 0:
- self.evaluate(epoch + 1, eval_low_data, sample_dir=sample_dir, train_phase=train_phase)
- self.save(saver, iter_num, ckpt_dir, "RetinexNet-%s" % train_phase)
- print("[*] Finish training for phase %s." % train_phase)
- def save(self, saver, iter_num, ckpt_dir, model_name):
- if not os.path.exists(ckpt_dir):
- os.makedirs(ckpt_dir)
- print("[*] Saving model %s" % model_name)
- saver.save(self.sess, \
- os.path.join(ckpt_dir, model_name), \
- global_step=iter_num)
- def load(self, saver, ckpt_dir):
- ckpt = tf.train.get_checkpoint_state(ckpt_dir)
- if ckpt and ckpt.model_checkpoint_path:
- full_path = tf.train.latest_checkpoint(ckpt_dir)
- try:
- global_step = int(full_path.split('/')[-1].split('-')[-1])
- except ValueError:
- global_step = None
- saver.restore(self.sess, full_path)
- return True, global_step
- else:
- print("[*] Failed to load model from %s" % ckpt_dir)
- return False, 0
- def test(self, test_low_data, test_high_data, test_low_data_names, save_dir, decom_flag):
- tf.global_variables_initializer().run()
- print("[*] Reading checkpoint...")
- load_model_status_Decom, _ = self.load(self.saver_Decom, './model/Decom')
- load_model_status_Relight, _ = self.load(self.saver_Relight, './model/Relight')
- if load_model_status_Decom and load_model_status_Relight:
- print("[*] Load weights successfully...")
-
- print("[*] Testing...")
- for idx in range(len(test_low_data)):
- print(test_low_data_names[idx])
- [_, name] = os.path.split(test_low_data_names[idx])
- suffix = name[name.find('.') + 1:]
- name = name[:name.find('.')]
- input_low_test = np.expand_dims(test_low_data[idx], axis=0)
- [R_low, I_low, I_delta, S] = self.sess.run([self.output_R_low, self.output_I_low, self.output_I_delta, self.output_S], feed_dict = {self.input_low: input_low_test})
- if decom_flag == 1:
- save_images(os.path.join(save_dir, name + "_R_low." + suffix), R_low)
- save_images(os.path.join(save_dir, name + "_I_low." + suffix), I_low)
- save_images(os.path.join(save_dir, name + "_I_delta." + suffix), I_delta)
- save_images(os.path.join(save_dir, name + "_S." + suffix), S)
|