|
@@ -5,10 +5,10 @@ tf.set_random_seed(19)
|
|
from model import cyclegan
|
|
from model import cyclegan
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='')
|
|
parser = argparse.ArgumentParser(description='')
|
|
-parser.add_argument('--dataset_dir', dest='dataset_dir', default='horse2zebra', help='path of the dataset')
|
|
|
|
|
|
+parser.add_argument('--dataset_dir', dest='dataset_dir', default='med-image', help='path of the dataset')
|
|
parser.add_argument('--epoch', dest='epoch', type=int, default=200, help='# of epoch')
|
|
parser.add_argument('--epoch', dest='epoch', type=int, default=200, help='# of epoch')
|
|
parser.add_argument('--epoch_step', dest='epoch_step', type=int, default=100, help='# of epoch to decay lr')
|
|
parser.add_argument('--epoch_step', dest='epoch_step', type=int, default=100, help='# of epoch to decay lr')
|
|
-parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='# images in batch')
|
|
|
|
|
|
+parser.add_argument('--batch_size', dest='batch_size', type=int, default=4, help='# images in batch')
|
|
parser.add_argument('--train_size', dest='train_size', type=int, default=1e8, help='# images used to train')
|
|
parser.add_argument('--train_size', dest='train_size', type=int, default=1e8, help='# images used to train')
|
|
parser.add_argument('--load_size', dest='load_size', type=int, default=286, help='scale images to this size')
|
|
parser.add_argument('--load_size', dest='load_size', type=int, default=286, help='scale images to this size')
|
|
parser.add_argument('--fine_size', dest='fine_size', type=int, default=256, help='then crop to this size')
|
|
parser.add_argument('--fine_size', dest='fine_size', type=int, default=256, help='then crop to this size')
|
|
@@ -20,8 +20,8 @@ parser.add_argument('--lr', dest='lr', type=float, default=0.0002, help='initial
|
|
parser.add_argument('--beta1', dest='beta1', type=float, default=0.5, help='momentum term of adam')
|
|
parser.add_argument('--beta1', dest='beta1', type=float, default=0.5, help='momentum term of adam')
|
|
parser.add_argument('--which_direction', dest='which_direction', default='AtoB', help='AtoB or BtoA')
|
|
parser.add_argument('--which_direction', dest='which_direction', default='AtoB', help='AtoB or BtoA')
|
|
parser.add_argument('--phase', dest='phase', default='train', help='train, test')
|
|
parser.add_argument('--phase', dest='phase', default='train', help='train, test')
|
|
-parser.add_argument('--save_freq', dest='save_freq', type=int, default=1000, help='save a model every save_freq iterations')
|
|
|
|
-parser.add_argument('--print_freq', dest='print_freq', type=int, default=100, help='print the debug information every print_freq iterations')
|
|
|
|
|
|
+parser.add_argument('--save_freq', dest='save_freq', type=int, default=3, help='save a model every save_freq iterations')
|
|
|
|
+parser.add_argument('--print_freq', dest='print_freq', type=int, default=2, help='print the debug information every print_freq iterations')
|
|
parser.add_argument('--continue_train', dest='continue_train', type=bool, default=False, help='if continue training, load the latest model: 1: true, 0: false')
|
|
parser.add_argument('--continue_train', dest='continue_train', type=bool, default=False, help='if continue training, load the latest model: 1: true, 0: false')
|
|
parser.add_argument('--checkpoint_dir', dest='checkpoint_dir', default='./checkpoint', help='models are saved here')
|
|
parser.add_argument('--checkpoint_dir', dest='checkpoint_dir', default='./checkpoint', help='models are saved here')
|
|
parser.add_argument('--sample_dir', dest='sample_dir', default='./sample', help='sample are saved here')
|
|
parser.add_argument('--sample_dir', dest='sample_dir', default='./sample', help='sample are saved here')
|