model.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. import os
  2. import random
  3. from tqdm import trange, tqdm
  4. from scipy.misc import imsave
  5. import tensorflow as tf
  6. import numpy as np
  7. from generator import Generator
  8. from encoder import Encoder
  9. from discriminator import Discriminator
  10. from utils import logger
  11. class BicycleGAN(object):
  12. def __init__(self, args):
  13. self._log_step = args.log_step
  14. self._batch_size = args.batch_size
  15. self._image_size = args.image_size
  16. self._latent_dim = args.latent_dim
  17. self._coeff_vae = args.coeff_vae
  18. self._coeff_reconstruct = args.coeff_reconstruct
  19. self._coeff_latent = args.coeff_latent
  20. self._coeff_kl = args.coeff_kl
  21. self._norm = 'instance' if args.instance_normalization else 'batch'
  22. self._use_resnet = args.use_resnet
  23. self._augment_size = self._image_size + (30 if self._image_size == 256 else 15)
  24. self._image_shape = [self._image_size, self._image_size, 3]
  25. self.is_train = tf.placeholder(tf.bool, name='is_train')
  26. self.lr = tf.placeholder(tf.float32, name='lr')
  27. self.global_step = tf.train.get_or_create_global_step(graph=None)
  28. image_a = self.image_a = \
  29. tf.placeholder(tf.float32, [self._batch_size] + self._image_shape, name='image_a')
  30. image_b = self.image_b = \
  31. tf.placeholder(tf.float32, [self._batch_size] + self._image_shape, name='image_b')
  32. z = self.z = \
  33. tf.placeholder(tf.float32, [self._batch_size, self._latent_dim], name='z')
  34. # Data augmentation
  35. seed = random.randint(0, 2**31 - 1)
  36. def augment_image(image):
  37. image = tf.image.resize_images(image, [self._augment_size, self._augment_size])
  38. image = tf.random_crop(image, [self._batch_size] + self._image_shape, seed=seed)
  39. image = tf.map_fn(lambda x: tf.image.random_flip_left_right(x, seed), image)
  40. return image
  41. image_a = tf.cond(self.is_train,
  42. lambda: augment_image(image_a),
  43. lambda: image_a)
  44. image_b = tf.cond(self.is_train,
  45. lambda: augment_image(image_b),
  46. lambda: image_b)
  47. # Generator
  48. G = Generator('G', is_train=self.is_train,
  49. norm=self._norm, image_size=self._image_size)
  50. # Discriminator
  51. D = Discriminator('D', is_train=self.is_train,
  52. norm=self._norm, activation='leaky',
  53. image_size=self._image_size)
  54. # Encoder
  55. E = Encoder('E', is_train=self.is_train,
  56. norm=self._norm, activation='relu',
  57. image_size=self._image_size, latent_dim=self._latent_dim,
  58. use_resnet=self._use_resnet)
  59. # conditional VAE-GAN: B -> z -> B'
  60. z_encoded, z_encoded_mu, z_encoded_log_sigma = E(image_b)
  61. image_ab_encoded = G(image_a, z_encoded)
  62. # conditional Latent Regressor-GAN: z -> B' -> z'
  63. image_ab = self.image_ab = G(image_a, z)
  64. z_recon, z_recon_mu, z_recon_log_sigma = E(image_ab)
  65. # Discriminate real/fake images
  66. D_real = D(image_b)
  67. D_fake = D(image_ab)
  68. D_fake_encoded = D(image_ab_encoded)
  69. loss_vae_gan = (tf.reduce_mean(tf.squared_difference(D_real, 0.9)) +
  70. tf.reduce_mean(tf.square(D_fake_encoded)))
  71. loss_image_cycle = tf.reduce_mean(tf.abs(image_b - image_ab_encoded))
  72. loss_gan = (tf.reduce_mean(tf.squared_difference(D_real, 0.9)) +
  73. tf.reduce_mean(tf.square(D_fake)))
  74. loss_latent_cycle = tf.reduce_mean(tf.abs(z - z_recon))
  75. loss_kl = -0.5 * tf.reduce_mean(1 + 2 * z_encoded_log_sigma - z_encoded_mu ** 2 -
  76. tf.exp(2 * z_encoded_log_sigma))
  77. loss = self._coeff_vae * loss_vae_gan - self._coeff_reconstruct * loss_image_cycle + \
  78. loss_gan - self._coeff_latent * loss_latent_cycle - \
  79. self._coeff_kl * loss_kl
  80. # Optimizer
  81. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
  82. with tf.control_dependencies(update_ops):
  83. self.optimizer_D = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=0.5) \
  84. .minimize(loss, var_list=D.var_list, global_step=self.global_step)
  85. self.optimizer_G = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=0.5) \
  86. .minimize(-loss, var_list=G.var_list)
  87. self.optimizer_E = tf.train.AdamOptimizer(learning_rate=self.lr, beta1=0.5) \
  88. .minimize(-loss, var_list=E.var_list)
  89. # Summaries
  90. self.loss_vae_gan = loss_vae_gan
  91. self.loss_image_cycle = loss_image_cycle
  92. self.loss_latent_cycle = loss_latent_cycle
  93. self.loss_gan = loss_gan
  94. self.loss_kl = loss_kl
  95. self.loss = loss
  96. tf.summary.scalar('loss/vae_gan', loss_vae_gan)
  97. tf.summary.scalar('loss/image_cycle', loss_image_cycle)
  98. tf.summary.scalar('loss/latent_cycle', loss_latent_cycle)
  99. tf.summary.scalar('loss/gan', loss_gan)
  100. tf.summary.scalar('loss/kl', loss_kl)
  101. tf.summary.scalar('loss/total', loss)
  102. tf.summary.scalar('model/D_real', tf.reduce_mean(D_real))
  103. tf.summary.scalar('model/D_fake', tf.reduce_mean(D_fake))
  104. tf.summary.scalar('model/D_fake_encoded', tf.reduce_mean(D_fake_encoded))
  105. tf.summary.scalar('model/lr', self.lr)
  106. tf.summary.image('image/A', image_a[0:1])
  107. tf.summary.image('image/B', image_b[0:1])
  108. tf.summary.image('image/A-B', image_ab[0:1])
  109. tf.summary.image('image/A-B_encoded', image_ab_encoded[0:1])
  110. self.summary_op = tf.summary.merge_all()
  111. def train(self, sess, summary_writer, data_A, data_B):
  112. logger.info('Start training.')
  113. logger.info(' {} images from A'.format(len(data_A)))
  114. logger.info(' {} images from B'.format(len(data_B)))
  115. assert len(data_A) == len(data_B), \
  116. 'Data size mismatch dataA(%d) dataB(%d)' % (len(data_A), len(data_B))
  117. data_size = len(data_A)
  118. num_batch = data_size // self._batch_size
  119. epoch_length = num_batch * self._batch_size
  120. num_initial_iter = 8
  121. num_decay_iter = 2
  122. lr = lr_initial = 0.0002
  123. lr_decay = lr_initial / num_decay_iter
  124. initial_step = sess.run(self.global_step)
  125. num_global_step = (num_initial_iter + num_decay_iter) * epoch_length
  126. t = trange(initial_step, num_global_step,
  127. total=num_global_step, initial=initial_step)
  128. for step in t:
  129. #TODO: resume training with global_step
  130. epoch = step // epoch_length
  131. iter = step % epoch_length
  132. if epoch > num_initial_iter:
  133. lr = max(0.0, lr_initial - (epoch - num_initial_iter) * lr_decay)
  134. if iter == 0:
  135. data = zip(data_A, data_B)
  136. random.shuffle(data)
  137. data_A, data_B = zip(*data)
  138. image_a = np.stack(data_A[iter*self._batch_size:(iter+1)*self._batch_size])
  139. image_b = np.stack(data_B[iter*self._batch_size:(iter+1)*self._batch_size])
  140. sample_z = np.random.normal(size=(self._batch_size, self._latent_dim))
  141. fetches = [self.loss, self.optimizer_D,
  142. self.optimizer_G, self.optimizer_E]
  143. if step % self._log_step == 0:
  144. fetches += [self.summary_op]
  145. fetched = sess.run(fetches, feed_dict={self.image_a: image_a,
  146. self.image_b: image_b,
  147. self.is_train: True,
  148. self.lr: lr,
  149. self.z: sample_z})
  150. if step % self._log_step == 0:
  151. z = np.random.normal(size=(1, self._latent_dim))
  152. image_ab = sess.run(self.image_ab, feed_dict={self.image_a: image_a,
  153. self.z: z,
  154. self.is_train: False})
  155. imsave('results/r_{}.jpg'.format(step), np.squeeze(image_ab, axis=0))
  156. summary_writer.add_summary(fetched[-1], step)
  157. summary_writer.flush()
  158. t.set_description('Loss({:.3f})'.format(fetched[0]))
  159. def test(self, sess, data_A, data_B, base_dir):
  160. step = 0
  161. for (dataA, dataB) in tqdm(zip(data_A, data_B)):
  162. step += 1
  163. image_a = np.expand_dims(dataA, axis=0)
  164. image_b = np.expand_dims(dataB, axis=0)
  165. images_random = []
  166. images_random.append(image_a)
  167. images_random.append(image_b)
  168. images_linear = []
  169. images_linear.append(image_a)
  170. images_linear.append(image_b)
  171. for i in range(23):
  172. z = np.random.normal(size=(1, self._latent_dim))
  173. image_ab = sess.run(self.image_ab, feed_dict={self.image_a: image_a,
  174. self.z: z,
  175. self.is_train: False})
  176. images_random.append(image_ab)
  177. z = np.zeros((1, self._latent_dim))
  178. z[0][0] = (i / 23.0 - 0.5) * 2.0
  179. image_ab = sess.run(self.image_ab, feed_dict={self.image_a: image_a,
  180. self.z: z,
  181. self.is_train: False})
  182. images_linear.append(image_ab)
  183. image_rows = []
  184. for i in range(5):
  185. image_rows.append(np.concatenate(images_random[i*5:(i+1)*5], axis=2))
  186. images = np.concatenate(image_rows, axis=1)
  187. images = np.squeeze(images, axis=0)
  188. imsave(os.path.join(base_dir, 'random_{}.jpg'.format(step)), images)
  189. image_rows = []
  190. for i in range(5):
  191. image_rows.append(np.concatenate(images_linear[i*5:(i+1)*5], axis=2))
  192. images = np.concatenate(image_rows, axis=1)
  193. images = np.squeeze(images, axis=0)
  194. imsave(os.path.join(base_dir, 'linear_{}.jpg'.format(step)), images)