12345678910111213141516171819202122232425262728293031323334 |
- import tensorflow as tf
- from utils import logger
- import ops
- class Discriminator(object):
- def __init__(self, name, is_train, norm='instance', activation='leaky', image_size=128):
- logger.info('Init Discriminator %s', name)
- self.name = name
- self._is_train = is_train
- self._norm = norm
- self._activation = activation
- self._reuse = False
- self._image_size = image_size
- def __call__(self, input):
- with tf.variable_scope(self.name, reuse=self._reuse):
- D = ops.conv_block(input, 64, 'C64', 4, 2, self._is_train,
- self._reuse, norm=None, activation=self._activation)
- D = ops.conv_block(D, 128, 'C128', 4, 2, self._is_train,
- self._reuse, self._norm, self._activation)
- D = ops.conv_block(D, 256, 'C256', 4, 2, self._is_train,
- self._reuse, self._norm, self._activation)
- num_layers = 3 if self._image_size == 256 else 1
- for i in range(num_layers):
- D = ops.conv_block(D, 512, 'C512_{}'.format(i), 4, 2, self._is_train,
- self._reuse, self._norm, self._activation)
- D = ops.conv_block(D, 1, 'C1', 4, 1, self._is_train,
- self._reuse, norm=None, activation=None, bias=True)
- D = tf.reduce_mean(D, axis=[1,2,3])
- self._reuse = True
- self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.name)
- return D
|