|
@@ -55,9 +55,9 @@ class Encoder(object):
|
|
self._reuse, norm=None, activation='leaky', bias=True)
|
|
self._reuse, norm=None, activation='leaky', bias=True)
|
|
for i, n in enumerate(num_filters):
|
|
for i, n in enumerate(num_filters):
|
|
E = ops.residual(E, n, 'res{}_{}'.format(n, i + 1), self._is_train,
|
|
E = ops.residual(E, n, 'res{}_{}'.format(n, i + 1), self._is_train,
|
|
- self._reuse, norm=self._norm, activation='leaky',
|
|
|
|
- bias=True)
|
|
|
|
|
|
+ self._reuse, norm=self._norm, bias=True)
|
|
E = tf.nn.avg_pool(E, [1, 2, 2, 1], [1, 2, 2, 1], 'SAME')
|
|
E = tf.nn.avg_pool(E, [1, 2, 2, 1], [1, 2, 2, 1], 'SAME')
|
|
|
|
+ E = tf.nn.relu(E)
|
|
E = tf.nn.avg_pool(E, [1, 8, 8, 1], [1, 8, 8, 1], 'SAME')
|
|
E = tf.nn.avg_pool(E, [1, 8, 8, 1], [1, 8, 8, 1], 'SAME')
|
|
E = ops.flatten(E)
|
|
E = ops.flatten(E)
|
|
mu = ops.mlp(E, self._latent_dim, 'FC8_mu', self._is_train, self._reuse,
|
|
mu = ops.mlp(E, self._latent_dim, 'FC8_mu', self._is_train, self._reuse,
|